Roll No.:....

B028412(028)

B. Tech. (Fourth Semester) Examination, April-May 2021

(AICTE Scheme)

(Electronics & Telecommunication Engineering Branch)

ANALOG CIRCUITS

Time Allowed: Three hours

Maximum Marks: 100

Minimum Pass Marks: 35

Note: All questions are compulsory. Part (a) of each question is compulsory and carries 4 marks.

Attempt any two parts from (b), (c) and (d) from each question which carry 8 marks each.

Assume any data if required or if found missing or misprint it with proper justification.

Unit-I

1. (a) State Miller's theorem and Dual of Miller's theorem.

(b) For the two stage cascade shown find A_i, A_v, R_l and R_o' .

(c) (i) Show that the exact expression for h_{fb} in terms of CE hybrid parameters is:

$$h_{fb} = -\frac{h_{fe} \cdot (1 - h_{re}) + h_{ie} \cdot h_{oe}}{(1 + h_{fe}) \cdot (1 - h_{re}) + h_{ie} \cdot h_{oe}}$$

(ii) The cascade configuration shown is the tendem emitter follower. Find the input resistance R_i if $h_{ie} = h_{re} = h_{oe} = 0$ and h_{fe} is the same for each transistors Q_1 to Q_M

(d) What is Darlington Pair Circuit? Why and where is it used? Derive expression for A_i and R_i for such a pair?

Unit-II

2. (a) What is the physical origin of the two capacitors in the hybrid $-\pi$ model? which one is having a greater magnitude and why? What is the order magnitude of each capacitance?

- (b) (i) Define Transconductance g_m and derive the expression for it.
 - (ii) Also prove that : $g_{ce} = h_{oe} h_{fe}$. $g_{b'c}$
- (c) A single stage CE amplifier is measured to have a voltage gain bandwidth F_H of 5 MHz with R_L = $500\,\Omega$. Assume h_{fe} = 100, g_m = 100 mA/V, $r_{bb'}$ = $100\,\Omega$, C_c = 1 pF, and F_T = 400 MHz.
 - (i) Find the value of the source resistance that will give the required bandwidth.
 - (ii) With the value of Rs found in part (i), find the midband voltage gain V_o / V_s .
- (d) Analyse common emitter transistor amplifier at high frequencies for short circuit current gain. Also prove that $F_T = h_{fe}$. F_B .

Unit-III

- 3. (a) Define the following types of distortion:
 - (i) Non-Linear Distortion
 - (ii) Frequency Distortion

- (b) Explain the step response of an amplifier. Derive the expression for rise time and sag and briefly explain why this happens?
- (c) Explain the effect of cascading on Bandwidth with the help of expression for higher and lower cut-off frequencies.
- (d) It is desired that the voltage gain of a RC coupled amplifier at 60 Hz should not decrease by more than 10% from its midband value. Show that the coupling capacitance C must be at least equal to 5.5/R' where $R' = R_o' + R_l'$ is expressed in $k\Omega$ and C in microfarad.

Unit-IV

- 4. (a) Draw a feedback amplifier in one-line block diagram form. What is the relation between transfer gain with feedback A_f and that without feedback A for a negative feedback amplifier.
 - (b) For the transistor feedback amplifier stage shown, $h_{fe}=100, h_{le}=1\,\mathrm{k}\Omega \ \ \mathrm{while} \ h_{re} \ \mathrm{and} \ h_{oe} \ \mathrm{are} \ \mathrm{negligible}.$ Determine with $R_e=0$.

(i)
$$R_{Mf} = V_o / I_s$$

(ii)
$$A_{Vf} = V_0 / V_s$$

- di (ii) R_{ij} din 8 no qui nome de la collection di ninique i (ii) il s
- (iv) R_{of}

- (c) What is the effect of negative feedback on input impedance of voltage shunt and current shunt amplifier?
- (d) Enumerate the effects of negative Feedback on the various characteristics of the amplifier.

B028412(028)

[7]

Unit-V

- 5. (a) Give the two Barkhausen conditions required in order for sinusoidal oscillations to be sustained.
 - (b) Draw the circuit and explain the working of Hartley oscillator using BJT. Write expression for frequency of oscillation.
 - (c) What is Weign bridge oscillator? Show that for such an oscillator gain of amplifier should be A > 3 to produce oscillations.
 - (d) What is piezoelectric effect? Draw and explain ac equivalent circuit of a crystal oscillator.